I SEE PROBLEM-SOLVING - KSI TASK BUILD-UP

Spot the Mistakes:

0		0		2
	0	0		2
		0	0	2
0		0	0	2
2	1	4	2	

Odd one ouł:

Answer using four of the digits:

3

$\bigcirc+\nabla=6$
$0+\bar{V}+\sqrt{V}=7 \quad \bar{V}=$

Find 9 squares:

GARETH METCALFE

I SEE PROBLEM-SOLVING - Y2 WORKED EXAMPLES

Building 2-Digit Numbers

10 and 1 Counters
Number Line Intervals
Reading Number Lines
Patterns in Counting
Dots in a Grid
Digits in a Grid
Addition Bordering Tens

Subtraction Bordering Tens
Three Numbers
Shapes for Numbers
Dice Patterns
Different Arrays
Camping Trip
Combinations
Estimating Fractions

I SEE PROBLEM-SOLVING - Y2 WORKED EXAMPLES

Fractions of a Set
Fraction Picłures
Choosing Measures
Groups of Coins
Adding Coins
Change
Reading Clocks
Shape Properties

Combining Shapes

Shape Patterns
Asking Questions
The Morning Routine

Building 2-Digit Numbers

Is it 25?
 \checkmark or x

$5+20$

5 tens 2 ones

Building 2-Digit Numbers

Is it 25? $\sqrt{ }$ or x

$$
5+20
$$

5 tens 2 ones

Building 2-Digit Numbers

Is it 28? $\sqrt{ }$ or x

$20+8$

20 tens 8 ones

Building 2-Digit Numbers

Is it 28 ? \quad or x

20 tens ${ }^{x}$ 8 ones

(1)	(1) \square^{1}	
® 『	[10	
[1]	(1) 0	[1]
[1]	[1]	(1)
® \square^{1}	(10)	(1)

Building 2-Digit Numbers

Is it $32 \boldsymbol{V}$ or x

$3+2$

3 tens 2 ones

Building 2-Digit Numbers

Is it 32? $\sqrt{ }$ or x

3 tens 2 ones

Building 2-Digit Numbers

Part 2

Explain the Mistakes

$$
3+6=36
$$

This is 41

29 is made with

 20 tens and 9 ones
10 and 1 Counters

10 and 1 Counters

Which is

 more?
10 and 1 Counters

10 and 1 Counters

10 and 1 Counters

10 and 1 Counters

This is

tens		ones
10	10	1
10	10	1
1	1	

Made with \square counters

10 and 1 Counters

This is 45

tens		ones
10	10	1
10	10	1

Made with 9 counters

10 and 1 Counters

This is

Made with \square counters

10 and 1 Counters

This is 21

tens	ones				
10	1	1	1	1	1
	1	1	1	1	1

Made with 12 counters

Number Line Intervals

 Which numbers are at the arrows?

Number Line Intervals

 Which numbers are at the arrows?

Number Line Intervals

 Which numbers are at the arrows?

Number Line Intervals

 Which numbers are at the arrows?

Number Line Intervals

 Which numbers are at the arrows?

Number Line Intervals

 Which numbers are at the arrows?

Number Line Intervals

 Which numbers are at the arrows?

Number Line Intervals

 Which numbers are at the arrows?

Number Line Intervals

 Which numbers are at the arrows?

Number Line Intervals

 Which numbers are at the arrows?

Reading Number Lines

Put 9 on each number line:

Reading Number Lines

Put 9 on each number line:

Reading Number Lines

Put 9 on each number line:

Reading Number Lines

Put 9 on each number line:

Reading Number Lines

Put 9 on each number line:

Reading Number Lines

Part 2

Put 18 on each number line:

Reading Number Lines

Put 18 on each number line:

Reading Number Lines

Put 18 on each number line:

Reading Number Lines

Part 2

Put 18 on each number line:

Reading Number Lines

Put 18 on each number line:

Patterns in Counting

What next?

\section*{| 0 | 0 | 1 | 1 | 2 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

$\square \Delta|\square| \square|\square|$

ㅁㅁㅁㅁㅁㅇㅇㅇㅇ

\section*{| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Patterns in Counting

MดOH PEX?

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 \\
\hline
\end{array}
$$

$\square \Delta \square \Delta \square \Delta \square$

ㅁㅁㅁㅁㅁㅇㅇㅇㅇ

\section*{| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Patterns in Counting

What next?

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 \\
\hline
\end{array}
$$

ㅁㅁㅁㅁㅁㅁㅇㅇㅇㅇ

\section*{| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Patterns in Counting

What next?

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 \\
\hline
\end{array}
$$

$\square \Delta|\square \Delta \square \Delta \square \Delta| \square|\square| \Delta$
$\square \square \square \square \square 0|0| 0|\diamond \diamond \diamond| \diamond$

\section*{| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Patterns in Counting

What next?

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 \\
\hline
\end{array}
$$

$\square \Delta \square \Delta \square \Delta \square \Delta \square \Delta \square \Delta$

$\square \square \square \square \square \bigcirc 0000 \diamond \diamond \diamond \diamond \diamond$

0	0	0	0	0	0	0	0	0	0	0	0

Patterns in Counting

Match a number pattern to a shape pattern.

4	4	5	5	6	6

凸

$$
\text { 凸 } \triangle \Delta \triangle \hat{\imath}
$$

4	4	5	5	4	4

Patterns in Counting

Match a number pattern to a shape pattern.

Patterns in Counting

Part 3

$\begin{array}{lllll}0 & 2 & 4 & 6 & 8\end{array}$ $\begin{array}{lllll}10 & 12 & 14 & 16 & 18\end{array}$

Patterns in Counting

Part 3

$\begin{array}{lllll}0 & 2 & 4 & 6 & 8\end{array}$ 10 12
 14
 16
 18 $\begin{array}{lllll}20 & 22 & 24 & 26 & 28 \\ 30 & 32 & 34 & 36 & 38\end{array}$

Patterns in Counting

Part 3

$$
\begin{array}{rrrrr}
0 & 2 & 4 & 6 & 8 \\
10 & 12 & 14 & 16 & 18 \\
20 & 22 & 24 & 26 & 28 \\
30 & 32 & 34 & 36 & 38
\end{array}
$$

Pattern in ones value:

Patterns in Counting

Part 3

$$
\begin{array}{rrrrr}
0 & 2 & 4 & 6 & 8 \\
10 & 12 & 14 & 16 & 18 \\
20 & 22 & 24 & 26 & 28 \\
30 & 32 & 34 & 36 & 38
\end{array}
$$

Pattern in ones value: 0, 2, 4, 6, 8 repeats.

Patterns in Counting

Part 3

$$
\begin{array}{rrrrr}
0 & 2 & 4 & 6 & 8 \\
10 & 12 & 14 & 16 & 18 \\
20 & 22 & 24 & 26 & 28 \\
30 & 32 & 34 & 36 & 38
\end{array}
$$

Pattern in ones value: $0,2,4,6,8$ repeats.

Pattern in tens value:

Patterns in Counting

$$
\begin{array}{rrrrr}
0 & 2 & 4 & 6 & 8 \\
10 & 12 & 14 & 16 & 18 \\
20 & 22 & 24 & 26 & 28 \\
30 & 32 & 34 & 36 & 38
\end{array}
$$

Pattern in ones value: $0,2,4,6,8$ repeats.

Pattern in tens value: one more ten every five numbers.

Dots in a Grid

Dots in a Grid
 - - - -

2 circles in this column

Dots in a Grid

2 circles in this column

Dots in a Grid

Part 2

Dots in a Grid

Dots in a Grid

Dots in a Grid

Which square has a missing dice?

Dots in a Grid

Which square has a missing dice?

Dots in a Grid Spot the Mistake

Part 3

One of the dice is in the wrong place.
 \section*{\section*{Dots in a Grid
 \section*{\section*{Dots in a Grid

 Spot the Mistake}

 Spot the Mistake}

Part 3

One of the dice is in the wrong place.

Dots in a Grid

Digits in a Grid

Spot the Mistake

One of the digits is in the wrong place.

Digits in a Grid

Spot the Mistake

One of the digits is in the wrong place.

Digits in a Grid

Part 2

Addition Bordering Tens

I know... so...

$9+7=\square$
$19+7=\square$

Addition Bordering Tens

I know... so...

$9+7=\square$
$19+7=\square$

Addition Bordering Tens

I know... so...

$9+7=\square$
$19+7=\square$

Addition Bordering Tens

I know... so...

Addition Bordering Tens

I know... so...

Addition Bordering Tens

I know... so...

Addition Bordering Tens

Part 2

Answer using 4 of the digits:

Addition Bordering Tens

Part 2

Answer using 4 of the digits:

Explain the Mistake

Addition Bordering Tens

Part 2

Answer using 4 of the digits:

Explain the Mistake

5

Addition Bordering Tens

Part 2

Answer using 4 of the digits:

Explain the Mistake

Addition Bordering Tens

Part 2

Answer using 4 of the digits:

Example Answer

Addition Bordering Tens

Part 2

Answer using 5 of the digits:

Addition Bordering Tens

Part 2

Answer using 5 of the digits: Explain the Mistake

1

3

8

9

Addition Bordering Tens

Part 2

Answer using 5 of the digits:

Explain the Mistake

回 $+5=\square$

Addition Bordering Tens

Part 2

Answer using 5 of the digits:

Explain the Mistake

9

Addition Bordering Tens

Part 2

Answer using 5 of the digits:

Example Answer

Subtraction Bordering Tens

Which number sentence is correct?

Subtraction Bordering Tens

Which number sentence is correct?

$$
9-4=5
$$

$$
5-4=9
$$

$$
9-4=6
$$

Subtraction Bordering Tens

Which number sentence is correct?

$$
9-4=5
$$

$$
5-4=9
$$

$$
9-4=6
$$

Subtraction Bordering Tens

Which number sentence is correct?

$$
9-4=5 \checkmark
$$

$$
5-4=9 x
$$

$$
9-4=6 x
$$

Subtraction Bordering Tens

Which number sentence is correct?

Subtraction Bordering Tens

Which number sentence is correct?

$12-5=8$
$12-5=7$

$5-12=7$

Subtraction Bordering Tens

Which number sentence is correct?

$12-5=8$
$12-5=7$

$5-12=7$

Subtraction Bordering Tens

Which number sentence is correct?

$12-5=8 x$
$12-5=7 \checkmark$

$5-12=7 x$

Subtraction Bordering Tens

Part 2

 Answer using three of the digits:

Subtraction Bordering Tens

Part 2

Answer using three of the digits:

Explain the Mistake:

ㅁ.ロ・ロ
8

Subtraction Bordering Tens

Part 2

Answer using three of the digits:

Explain the Mistake:

Subtraction Bordering Tens

Part 2

Answer using three of the digits:

Explain the Mistake:

Subtraction Bordering Tens

Part 2

Answer using three of the digits:
Correct Answer:

4

Subtraction Bordering Tens

Part 2

Answer using three of the digits:
Correct Answer:

4

Subtraction Bordering Tens

Part 2

 Answer using four of the digits:

Subtraction Bordering Tens

Part 2

Answer using four of the digits: Explain the Mistake: वप-प

Subtraction Bordering Tens

Part 2

Answer using four of the digits:

Explain the Mistake:

四-回

Subtraction Bordering Tens

Part 2

Answer using four of the digits:

Explain the Mistake:

Subtraction Bordering Tens

Part 2

Answer using four of the digits:
Explain the Mistake:

Subtraction Bordering Tens

Answer using four of the digits：

Correct Answer：

四－回－回

Three Numbers

Part 1

I think of 3 numbers. They are all different. They have a sum of 20.

Three Numbers

I think of 3 numbers. They are all different.

 They have a sum of 20.
Explain the Mistake:

$12+4+3$

Three Numbers

I think of 3 numbers. They are all different. They have a sum of 20.

Explain the Mistake:

$$
12+4+3
$$

Three Numbers

I think of 3 numbers. They are all different.

 They have a sum of $\mathbf{2 0}$.
Explain the Mistake:

$12+4+4$

Three Numbers

Part 1

I think of 3 numbers. They are all different. They have a sum of 20.

Explain the Mistake:

$12+4+4$

Three Numbers

Part 2

I think of 3 different numbers.
They have a sum of 16.
Each number is less than 10.

Three Numbers

Part 2

I think of 3 different numbers.
They have a sum of $\mathbf{1 6}$.
Each number is less than 10.
Correct or Incorrect? $\sqrt{ }$ or \boldsymbol{x}

$$
10+5+1
$$

$8+2+6$

$$
7+6+3
$$

$8+4$ + 4

Three Numbers

Part 2

I think of 3 different numbers.
They have a sum of $\mathbf{1 6}$.
Each number is less than 10.
Correct or Incorrect? $\sqrt{ }$ or \boldsymbol{x}

Shapes for Numbers

Part 1

$=4$
$=2$

Shapes for Numbers

Part 1

Shapes for Numbers

Part 2

Each shape stands for a number.

Shapes for Numbers

Part 2

Each shape stands for a number.

Shapes for Numbers

Part 2

Each shape stands for a number.

Shapes for Numbers

Part 2

Each shape stands for a number.

Shapes for Numbers

Part 2

Each shape stands for a number.

Shapes for Numbers

Part 2

Each shape stands for a number.

$=8$

Shapes for Numbers

Part 2

Each shape stands for a number.

Shapes for Numbers

Part 2

Each shape stands for a number.

Shapes for Numbers

Part 2

Each shape stands for a number.

Shapes for Numbers

Part 2

Each shape stands for a number.

Shapes for Numbers

Part 3

Each shape stands for a number.

Shapes for Numbers

Part 3

Each shape stands for a number.

Shapes for Numbers

Part 3

Each shape stands for a number.

Shapes for Numbers

Part 3

Each shape stands for a number.

Shapes for Numbers

Part 3

Each shape stands for a number.

Dice Patterns

Part 1

This is 3 lots of 4.

Dice Patterns

Part 1

This is 3 lots of 4. There are 12 dots in total.

Dice Patterns

Part 1

This is 3 lots of 4. There are 12 dots in total.

$$
\begin{aligned}
& \because \because \quad \because: \quad \because \\
& 4+4+4=12
\end{aligned}
$$

Dice Patterns

Part 1

This is 3 lots of 4. There are 12 dots in total.

$$
\begin{aligned}
& 4+4+4=12 \\
& 3 \times 4=12
\end{aligned}
$$

Dice Patterns

This is 4 lots of 5 .

Dice Patterns

This is 4 lots of 5 . There are 20 dots in total.

Dice Patterns

This is 4 lots of 5 . There are 20 dots in total.

$$
5+5+5+5=20
$$

Dice Patterns

This is 4 lots of 5 . There are 20 dots in total.

$$
\begin{aligned}
& 5+5+5+5=20 \\
& 4 \times 5=20
\end{aligned}
$$

Dice Patterns

Part 2

Which Number Sentences?

Dice Patterns

Part 2

Which Number Sentences?

$5+5+5+5$
4×5

$15+5$
3×5

Dice Patterns

Part 2

Which Number Sentences?

$$
5+5+5+5
$$

$15+5$

$$
4 \times 5
$$

Dice Patterns

Part 2

Which Number Sentences?

Dice Patterns

Part 2

Which Number Sentences?

$$
2+2+2+2+2+2 \quad 2+8+2
$$

6×2
5×2

Dice Patterns

Part 2

Which Number Sentences?

$$
2+2+2+2+2+2
$$

$2+8+2$

$$
6 \times 2
$$

5×2

Dice Patterns

Part 2

Which Number Sentences?

Dice Patterns

Part 2

Which Number Sentences?

$5+5+5+5+5+5$
$20+10$
6×5
3×10

Dice Patterns

Part 2

Which Number Sentences?

$5+5+5+5+5+5$
$20+10$
6×5
3×10

Different Arrays

Part 1

Different Arrays

Part 1

5×2

Different Arrays

Part 1

5×2 or 2×5

Different Arrays

Part 1

5×2 or 2×5
10 dots in total

Different Arrays

Part 2

Make an array using 14 counters.

Different Arrays

Make an array using 14 counters.
Explain the mistake:

						O		
				0				
						0		

Different Arrays

Make an array using 14 counters.
Example answer:

Different Arrays

Part 2

Make an array using 14 counters.
Example answer:

\times number sentences:

7×2
 or
 2×7

Different Arrays

Part 3

Make two arrays using 14 counters in total.

Different Arrays

Make two arrays using 14 counters in total. Example answer:

Different Arrays

Part 3

Make two arrays using 14 counters in total.
Example answer:

4×2 and
3×2

Camping Trip

Part 1

14 people camping.
They use
\square tents that fit 2 people.

Camping Trip

Part 1

14 people camping.
They use
\square tents that fit 2 people.

Camping Trip

Part 1

14 people camping.
They use $\mathbf{7}$ tents that fit 2 people.

Camping Trip

Part 1

12 people camping.
They use \square tents that fit $\mathbf{4}$ people.

Camping Trip

Part 1

12 people camping.
They use \square tents that fit $\mathbf{4}$ people.

Camping Trip

Part 1

12 people camping.
They use 3 tents that fit $\mathbf{4}$ people.

Camping Trip

Part 1

11 people camping.
They use \square tents that fit $\mathbf{4}$ people.

Camping Trip

Part 1

11 people camping.
They use \square tents that fit $\mathbf{4}$ people.

Camping Trip

Part 1

11 people camping.
They use $\mathbf{3}$ tents that fit $\mathbf{4}$ people.

Camping Trip

Part 2

10 people camping.
They use 5 tents.
They use tents of the same size.

Camping Trip

Part 2

10 people camping.
They use 5 tents.
They use tents of the same size.

Camping Trip

Part 2

10 people camping.
They use $\mathbf{2}$ tents.
They use tents of the same size.

Camping Trip

Part 2

10 people camping.
They use $\mathbf{2}$ tents.
They use tents of the same size.

Camping Trip

Part 2

14 people camping.
They use 4 tents.
Some tents are different sizes.

Camping Trip

Part 2

14 people camping.
They use 4 tents.
Some tents are different sizes.

Combinations

Part 1

Tim has 3 t-shirts:

Tim has 3 pairs of trousers: How many outfits can he make?

Combinations

Part 1

Tim has 3 t-shirts:

Tim has 3 pairs of trousers: How many outfits can he make?

Combinations

Part 1

Tim has 3 t-shirts:

Tim has 3 pairs of trousers: How many outfits can he make?

Combinations

Part 1

Tim has 3 t-shirts:

Tim has 3 pairs of trousers: How many outfits can he make?

Combinations

Part 1

Tim has 3 t-shirts:

Tim has 3 pairs of trousers: How many outfits can he make?

Combinations

Part 1

Tim has 3 t-shirts:

Tim has 3 pairs of trousers: How many outfits can he make?

Combinations

Part 1

Tim has 3 t-shirts:

Tim has 3 pairs of trousers: How many outfits can he make?

Combinations

Part 1

Tim has 3 t-shirts:

Tim has 3 pairs of trousers: How many outfits can he make?

Combinations

Part 1

Tim has 3 t-shirts:

Tim has 3 pairs of trousers: How many outfits can he make?

Combinations

Part 1

Tim has 3 t-shirts:

Tim has 3 pairs of trousers: How many outfits can he make?

Combinations

Beth is given $£ \mathbf{5}$ per day for doing the gardening.
She does the gardening for $\mathbf{3}$ days.
How much money does she earn in total?

Which Picture?

Combinations

Beth is given $£ \mathbf{5}$ per day for doing the gardening.
She does the gardening for $\mathbf{3}$ days.
How much money does she earn in total?

Which Picture?

Combinations

Your sandwich can be white bread or brown bread. Your sandwich can be cheese, ham, tuna or jam. How many different sandwiches can be made?

Which Picture?

Combinations

Your sandwich can be white bread or brown bread. Your sandwich can be cheese, ham, tuna or jam. How many different sandwiches can be made?

Which Picture?

Estimating Fractions

Part 1

What do you notice?

Estimating Fractions

Which coloured part is the largest in size? Which coloured part is the largest as a fraction?

Estimating Fractions

Which coloured part is the largest in size?
Which coloured part is the largest as a fraction?

Estimating Fractions

Which coloured part is the largest in size? Which coloured part is the largest as a fraction?

Estimating Fractions

What do you notice?

Estimating Fractions

Which coloured part is the largest in size?
Which coloured part is the largest as a fraction?

Estimating Fractions

Which coloured part is the largest in size? Which coloured part is the largest as a fraction?

Estimating Fractions

Which coloured part is the largest in size? Which coloured part is the largest as a fraction?

Largest part in size

Estimating Fractions

Part 2

As a fraction of the shape, is the coloured part...
Less than $\frac{1}{4}$
$\frac{1}{4}$
More than $\frac{1}{4}$

Estimating Fractions

As a fraction of the shape, is the coloured part...
Less than $\frac{1}{4} \quad \frac{1}{4} \quad$ More than $\frac{1}{4}$

Estimating Fractions

As a fraction of the shape, is the coloured part...
Less than $\frac{1}{4}$
$\frac{1}{4}$ More than $\frac{1}{4}$

Estimating Fractions

As a fraction of the shape, is the coloured part...
Less than $\frac{1}{4}$
$\frac{1}{4}$
More than $\frac{1}{4}$

Estimating Fractions

As a fraction of the shape, is the coloured part...

Less than $\frac{1}{4}$

Estimating Fractions

Part 2

As a fraction of the shape, is the coloured part...
Less than $\frac{1}{4}$
$\frac{1}{4}$
More than $\frac{1}{4}$

Estimating Fractions

As a fraction of the shape, is the coloured part...
Less than $\frac{1}{4}$
$\frac{1}{4}$
More than $\frac{1}{4}$

Estimating Fractions

Part 2

As a fraction of the shape, is the coloured part...

Estimating Fractions

Part 2

As a fraction of the shape, is the coloured part...
Less than $\frac{1}{4}$
$\frac{1}{4}$
More than $\frac{1}{4}$

Estimating Fractions

As a fraction of the shape, is the coloured part...
Less than $\frac{1}{4}$
$\frac{1}{4}$ More than $\frac{1}{4}$

Estimating Fractions

As a fraction of the shape, is the coloured part...
Less than $\frac{1}{4}$
$\frac{1}{4}$ More than $\frac{1}{4}$

Estimating Fractions

Part 3

Sort the fraction into:
Less than $\frac{1}{4}$

More than $\frac{1}{4}$ less than $\frac{1}{2}$

More than $\frac{1}{2}$

Estimating Fractions

Part 3

Sort the fraction into:
Less than $\frac{1}{4}$
The fraction of the bike that is the seat.

More than $\frac{1}{4}$ less than $\frac{1}{2}$

More than $\frac{1}{2}$

Estimating Fractions

Part 3

Sort the fraction into:

More than $\frac{1}{4}$ less than $\frac{1}{2}$

More than $\frac{1}{2}$

Less than $\frac{1}{4}$

The fraction of the bike that is metal.

Estimating Fractions

Part 3

Sort the fraction into:

The fraction of the bike that is green.

Less than $\frac{1}{4}$

More than $\frac{1}{4}$ less than $\frac{1}{2}$

More than $\frac{1}{2}$

Fractions of a Set

Part 1

Which picture shows $\frac{1}{2}$ of 8 ?

Fractions of a Set

Part 1

Which picture shows $\frac{1}{2}$ of 8 ?

Fractions of a Set

Part 1

Which picture shows $\frac{1}{2}$ of 8 ?

x

Fractions of a Set

Part 1

Which picture shows $\frac{1}{4}$ of 8 ?

Fractions of a Set

Part 1

Which picture shows $\frac{1}{4}$ of 8 ?

Fractions of a Set

Part 1

Which picture shows $\frac{1}{4}$ of 8 ?

$$
x
$$

Fractions of a Set

Part 2

Can 8 be split into $\frac{1}{2}$?

Fractions of a Set

Part 2

Can 8 be split into $\frac{1}{2}$?

$\sqrt{ }$

Fractions of a Set

Can 8 be split into $\frac{1}{2}$?

Can 8 be split into $\frac{1}{3}$?

Fractions of a Set

Can 8 be split into $\frac{1}{2}$?

Can 8 be split into $\frac{1}{3}$?

Fractions of a Set

Part 2

Can 8 be split into $\frac{1}{2}$?

Can 8 be split into $\frac{1}{3}$?

Can 8 be split into $\frac{1}{4}$?

Fractions of a Set

Part 2

Can 8 be split into $\frac{1}{2}$?

Can 8 be split into $\frac{1}{3}$?

Can 8 be split into $\frac{1}{4}$?

Fractions of a Set

My number can be split into equal groups of $\frac{1}{3}$ My number cannot be split into equal groups of $\frac{1}{2}$ My number is less than 10.

Fractions of a Set

My number can be split into equal groups of $\frac{1}{3}$ My number cannot be split into equal groups of $\frac{1}{2}$ My number is less than 10.

Fractions of a Set

My number can be split into equal groups of $\frac{1}{3} \boldsymbol{V}$ My number cannot be split into equal groups of $\frac{1}{2}$ My number is less than 10. \downarrow

Could it be 6?

6 can be split into equal groups of $\frac{1}{3}$

Fractions of a Set

My number can be split into equal groups of $\frac{1}{3} \sqrt{ }$ My number cannot be split into equal groups of $\frac{1}{2} \boldsymbol{x}$ My number is less than 10. \downarrow

Could it be 6?

6 can be split into equal groups of $\frac{1}{3}$

6 can be split into equal groups of $\frac{1}{2}$

Fractions of a Set

My number can be split into equal groups of $\frac{1}{3}$ My number cannot be split into equal groups of $\frac{1}{2}$ My number is less than 10.

Fractions of a Set

My number can be split into equal groups of $\frac{1}{3} \sqrt{ }$ My number cannot be split into equal groups of $\frac{1}{2}$ My number is less than 10. $\sqrt{ }$

Could it be 9 ?

9 can be split into equal groups of $\frac{1}{3}$

Fractions of a Set

My number can be split into equal groups of $\frac{1}{3} \sqrt{ }$ My number cannot be split into equal groups of $\frac{1}{2} \boldsymbol{V}$ My number is less than 10. $\sqrt{ }$

Could it be 9?

9 can be split into equal groups of $\frac{1}{3}$

9 cannot be split into
equal groups of $\frac{1}{2}$

Fraction Pictures

Part 1

This picture shows $\frac{1}{3}$

Fraction Pictures

This picture shows $\frac{1}{3}$

Fraction Pictures

This picture shows $\frac{1}{3}$

Does this picture show $\frac{1}{3}$?
 \checkmark or x

Part 1

Fraction Pictures

Part 1

This picture shows $\frac{1}{4}$

Fraction Pictures

This picture shows $\frac{1}{4}$

Does this
 picture show $\frac{1}{4}$?

$\sqrt{ }$ or x

Fraction Pictures

This picture shows $\frac{1}{4}$

Does this
 picture show $\frac{1}{4}$?

$\sqrt{ }$ or x

Fraction Pictures

Part 1

This picture
 shows $\frac{1}{2}$

Fraction Pictures

Part 1

This picture shows $\frac{1}{2}$

Does this
 picture show $\frac{1}{2}$?

$\sqrt{ }$ or x

Fraction Pictures

Part 1

This picture shows $\frac{1}{2}$

Does this
 picture show $\frac{1}{2}$?

$\sqrt{ }$ or x

Fraction Pictures

Part 2

$\frac{1}{4}$ or $\frac{1}{2}$ or trash? 血

$\frac{1}{4}$	$\frac{1}{2}$	trash 茼

Fraction Pictures

Part 2

$\frac{1}{4}$ or $\frac{1}{2}$ or trash? 血

$\frac{1}{4}$			$\frac{1}{2}$

Fraction Pictures

Part 2

$\frac{1}{4}$ or $\frac{1}{2}$ or trash? 血

$\frac{1}{4}$			$\frac{1}{2}$

Fraction Pictures

Part 2

$\frac{1}{4}$ or $\frac{1}{2}$ or trash? 血

$\frac{1}{4}$		$\frac{1}{2}$	trash 自

Fraction Pictures

Part 3

Are $\frac{3}{4}$ of the dots blue?

○

Fraction Pictures

Part 3

Are $\frac{3}{4}$ of the dots blue?

O

○

Fraction Pictures

Part 3

Does the picture show $\frac{3}{4}$?

Fraction Pictures

Part 3

Does the picture show $\frac{3}{4}$?

Fraction Pictures

Does the picture show $\frac{3}{4}$?

Fraction Pictures

Part 3

Does the picture show $\frac{3}{4}$?

Choosing Measures

 than a marble.

Choosing Measures

 than a marble.

Choosing Measures

Part 1

Choosing Measures

The earth is smaller and colder

 than the sun.

Choosing Measures

Part 2 Measure the height of a tree in...

Centimetres (cm)

Metres (m)

Kilograms (kg)

Choosing Measures

Measure the capacity of a water bottle in...

Centimetres (cm)

Grams (g)

Litres (I)

Choosing Measures

Kilograms (kg)

Grams (g)

Centimetres (cm)

Choosing Measures

Centimetres (cm)

Grams (g)

Millimetres (mm)

Groups of Coins

Part 1

Same or Different?

Groups of Coins

Same or Different?

Groups of Coins

Same or Different?

15p

15p

Same

Groups of Coins

Same or Different?

Groups of Coins

Part 1

Same or Different?

11p

12p

Different

Groups of Coins

Part 1

Same or Different?

Groups of Coins

Part 1

Same or Different?

14p

13p

Different

Groups of Coins

Same or Different?

Groups of Coins

Same or Different?

Groups of Coins

Part 2

Make 14p. Use 4 coins.

\checkmark or \boldsymbol{x}

Groups of Coins

Part 2

Make 14p. Use 4 coins.

\checkmark or \mathbf{x}

Groups of Coins

Part 2

Make 14p. Use 4 coins.
 \checkmark or \times

Groups of Coins

Part 2

Make 14p. Use 4 coins.

\checkmark or \boldsymbol{x}

Groups of Coins

Part 2

Make 14p. Use 4 coins.

\checkmark or \mathbf{x}

Groups of Coins

Part 2

Make 14p. Use 4 coins.

\checkmark or \mathbf{x}

2p

Groups of Coins

Part 2

Make 14p. Use 4 coins.

\checkmark or \mathbf{x}

Groups of Coins

Part 2

Make 14p. Use 4 coins.

\checkmark or \boldsymbol{x}

Groups of Coins

Part 2

Make 14p. Use 4 coins.

\checkmark or \mathbf{x}

Adding Coins

Odd One Out

(5p 5p

Adding Coins

Odd One Out

35p

30p

30p

Adding Coins

Part 1

Odd One Out

Odd One Out

50p
50p

45p

Adding Coins

Part 1

Odd One Out

Adding Coins

Odd One Out

30p

25p

25p

Adding Coins

Part 2

Make 50p. Use 4 coins.

\checkmark or \boldsymbol{x}

Adding Coins

Part 2

Make 50p. Use 4 coins.

\checkmark or \mathbf{x}

Adding Coins

Part 2

Make 50p. Use 4 coins.

\checkmark or \mathbf{x}

Adding Coins

Part 2

Make 50p. Use 4 coins.

\checkmark or \mathbf{x}

10p

Adding Coins

Part 2

Make 50p. Use 4 coins.
 \checkmark or \times

Adding Coins

Part 2

Make 50p. Use 4 coins.

\checkmark or \boldsymbol{x}

20p

Adding Coins

Part 2

Make 50p. Use 4 coins.

\checkmark or \mathbf{x}

Adding Coins

Part 2

Make 50p. Use 4 coins.

\checkmark or \mathbf{x}

Adding Coins

Part 2

Make 50p. Use 4 coins.

\checkmark or \mathbf{x}

Change

Part 1

Kam's money:

45p

Kam needs more money.
Kam can buy. No change.
Kam can buy. He gets change.

Change

Part 1

Kam's money:

45p

$5 p$

Kam needs more money.

Kam can buy. No change.

Kam can buy. He gets change.

Change

Part 1

Jenny's money:

Jenny needs more money.
Jenny can buy. No change.
Jenny can buy. She gets change.

Change

Jenny's money:
$45 p$

Jenny needs more money.

Jenny can buy. No change.
Jenny can buy. She gets change.

Change

Helen's money:

45p

20p

Helen needs more money.
Helen can buy. No change.
Helen can buy. She gets change.

Change

Helen's money:

20p

Helen needs more money. Helen can buy. No change.

Helen can buy. She gets change.

Change

Part 2

Zack's money:

55p

Zack needs \square more. OR Zack gets change.

Change

Part 2

Zack's money:

55p

Zack needs \square more. OR
 Zack gets

Change

Part 2

Zack's money:

55p

Zack needs 10p more.
 OR
 Zack gets

Change

Part 2

Beth's money:

55p

Beth needs \square more.
OR
Beth gets \square change.

Change

Part 2

Beth's money:

55p

Beth needs

OR
Beth gets \square change.

Change

Part 2

Beth's money:

55p

Beth needs $>$ more.
OR
Beth gets 5 p change.

Change

I pay with 2 coins:

17p

I get 2 coins change:

Change

I pay with 2 coins:

10p

17p

I get 2 coins change:

Change

I pay with 2 coins:

$10 p$

17p

I get 2 coins change:

Change

I pay with 1 coin:

$17 p$

I get 3 coins change:

Change

I pay with 1 coin:

17p

I get 3 coins change:

Change

Part 3

I pay with 1 coin:

17p

I get 3 coins change:

Change

I pay with 3 coins:

17p

I get 2 coins change:

Change

I pay with 3 coins:

I get 2 coins change:

Change

I pay with 3 coins:

17p

I get 2 coins change:

Reading Clocks

Part 1

Which clock shows 2:00?

Reading Clocks

Part 1

Which clock shows 2:00?

Reading Clocks

Part 1

Which clock shows 9:05?

Reading Clocks

Part 1

Which clock shows 9:05?

Reading Clocks

Which clock shows 7:50?

Reading Clocks

Which clock shows 7:50?

Reading Clocks

Part 2

The time is

Reading Clocks

Part 2

The time is

Reading Clocks

Part 2

The time is

Reading Clocks

Part 2

The time is $\mathbf{7 : 0 0}$

Reading Clocks

Part 2

The time is

Reading Clocks

Part 2

The time is

Reading Clocks

Part 2

The time is

Reading Clocks

Part 2

The time is $\mathbf{9 : 3 0}$

Reading Clocks

Part 2

The time is

Reading Clocks

Part 2

The time is

Reading Clocks

Part 2

The time is

Reading Clocks

Part 2

The time is $\mathbf{3 : 4 5}$

Reading Clocks

Part 3

The time is $\mathbf{4 : 3 0}$
The missing hand will be...

Reading Clocks

Part 3

The time is $\mathbf{4 : 3 0}$

Reading Clocks

Part 3

The time is $\mathbf{3 : 0 2}$
The missing hand will be...

Reading Clocks

Part 3

The time is $\mathbf{3 : 0 2}$

Reading Clocks

Part 3

The time is $\mathbf{2 : 4 5}$
The missing hand will be...

Reading Clocks

Part 3

The time is $\mathbf{2 : 4 5}$

Shape Properties

 Describe the shape:

4 sides: Quadrilateral
5 sides: Pentagon
6 sides: Hexagon
Lines of symmetry:

All sides equal length?
Straight sides?

I notice...

Shape Properties

 Describe the shape:

4 sides: Quadrilateral
5 sides: Pentagon
6 sides: Hexagon
Lines of symmetry:

All sides equal length?
Straight sides?
I notice...

Shape Properties

Describe the shape:

Part 1

4 sides: Quadrilateral
5 sides: Pentagon
6 sides: Hexagon
Lines of symmetry: 2
All sides equal length?
Straight sides?
I notice...

Shape Properties

 Describe the shape:

4 sides: Quadrilateral
5 sides: Pentagon
6 sides: Hexagon
Lines of symmetry: 2
All sides equal length? \mathbf{x}
Straight sides?
I notice...

Shape Properties

 Describe the shape:

4 sides: Quadrilateral
5 sides: Pentagon
6 sides: Hexagon
Lines of symmetry: 2
All sides equal length? \mathbf{x}
Straight sides? $\sqrt{ }$
I notice...

Shape Properties

Part 1

4 sides: Quadrilateral
5 sides: Pentagon
6 sides: Hexagon
Lines of symmetry:

All sides equal length?
Straight sides?
I notice...

Shape Properties

Part 1

4 sides: Quadrilateral
5 sides: Pentagon
6 sides: Hexagon
Lines of symmetry:

All sides equal length?
Straight sides?
I notice...

Shape Properties

 Describe the shape:

4 sides: Quadrilateral
5 sides: Pentagon
6 sides: Hexagon
Lines of symmetry:

1

All sides equal length?
Straight sides?
I notice...

Shape Properties

Part 1

4 sides: Quadrilateral
5 sides: Pentagon
6 sides: Hexagon
Lines of symmetry:

All sides equal length? \mathbf{x}
Straight sides?
I notice...

Shape Properties

Part 1

4 sides: Quadrilateral
5 sides: Pentagon
6 sides: Hexagon
Lines of symmetry: 1

All sides equal length? \mathbf{x}
Straight sides? $\sqrt{ }$
I notice...

Shape Properties

Describe the shape:

Part 1

4 sides: Quadrilateral
5 sides: Pentagon
6 sides: Hexagon
Lines of symmetry:

All sides equal length?
Straight sides?
I notice...

Shape Properties

Describe the shape:

Part 1

Shape Properties

 Describe the shape:

Part 1

4 sides: Quadrilateral
5 sides: Pentagon
6 sides: Hexagon
Lines of symmetry: 1

All sides equal length? \mathbf{x}
Straight sides?

I notice...

Shape Properties

 Describe the shape:

Part 1

Shape Properties

Part 2

Sort the shapes:

Shape Properties

Part 2

Sort the shapes:

Hexagons

Not Hexagons

Shape Properties

Part 2

Sort the shapes:

Hexagons

Shape Properties

Sort the shapes:

Part 2

Hexagons
Not Hexagons

Shape Properties

Sort the shapes:

Part 2

Hexagons

Shape Properties

Part 2

Sort the shapes:

Hexagons

Not Hexagons

Shape Properties

Part 2

Sort the shapes:

	All sides equal length	Not all sides equal length
Hexagon		
Not hexagon		

Shape Properties

Part 2

Sort the shapes:

	All sides equal length	Not all sides equal length
Hexagon		
Not hexagon		

Shape Properties

Sort the shapes:

	All sides equal length	Not all sides equal length
Hexagon	\square	
Not hexagon		

Shape Properties

Part 2

Sort the shapes:

	All sides equal length	Not all sides equal length
Hexagon	P	
Not hexagon		\square

Shape Properties

Part 2

Sort the shapes:

	All sides equal length	Not all sides equal length
Hexagon	P	
Not hexagon		

Shape Properties

Part 2

Sort the shapes:

Hexagons
Symmetrical

Shape Properties

Part 2

Sort the shapes:

Shape Properties

Part 2

Sort the shapes:

Hexagons
Symmetrical

Shape Properties

Part 2

Sort the shapes:

Shape Properties

Part 2

Sort the shapes:

Hexagons
Symmetrical

Combining Shapes

Task A Answers

Combining Shapes

Task A Answers

Combining Shapes

Task A Answers

Combining Shapes

Task A Answers

Combining Shapes

Combining Shapes

4 small squares

Combining Shapes

Task A Answers

4 medium squares

Combining Shapes

Task A Answers

1 large square

Combining Shapes

Task B Answers

Combining Shapes

Task B Answers

4 small triangles

Total:
 4

Combining Shapes

Task B Answers

2 medium triangles Total: 4 + 2

Combining Shapes

Task B Answers

1 big triangle
 Total:
 $4+2+1=7$

Combining Shapes

Task B Answers

Task B Answers

Combining Shapes

4 small squares

Total:

4

Combining Shapes

Task B Answers

Total: $4+1$

1 medium square

Combining Shapes

1 large square

Task B Answers

Total:
$4+1+1=6$

Combining Shapes

Task C Answers

Combining Shapes

Task C Answers

Task 1: 3 shapes to make a rectangle

Combining Shapes

Task C Answers

Task 2: 4 shapes to make a square

Combining Shapes

Task C Answers

Task 3: 3 shapes to make a triangle

Combining Shapes

Task C Answers

Task 4: 4 shapes to make a triangle

Combining Shapes

Task D Answers

Combining Shapes

Task D Answers

Triangles:
 4

Combining Shapes

Task D Answers

Triangles: $4+1=5$

Combining Shapes

Task D Answers

Triangles: $4+1=5$

Squares:

2

Combining Shapes

Task D Answers

Triangles: $4+1=5$

Squares:
$2+1=3$

Combining Shapes

Triangles: $4+1=5$

Squares:

$2+1=3$

Rectangles:

2

Combining Shapes

Task D Answers

Combining Shapes

Task D Answers

Triangles:

2

Combining Shapes

Task D Answers

Triangles:
 $2+2$

Task D Answers

Combining Shapes

Triangles:
 $2+2+2=6$

Combining Shapes

Task D Answers

Triangles:
 $2+2+2=6$

Squares:

1

Combining Shapes

Task D Answers

Triangles:
 $2+2+2=6$

Squares:

$$
1+1=2
$$

Shape Patterns

Continue the pattern:

Shape Patterns

Continue the pattern:

Shape Patterns

Continue the pattern:

Shape Patterns

Continue the pattern:

Shape Patterns

Continue the pattern:

Shape Patterns

Continue the pattern:

Shape Patterns

Continue the pattern:

Shape Patterns

Continue the pattern:

\uparrow

Shape Patterns

Continue the pattern:

Shape Patterns

Continue the pattern:

V미V밈ㅁㅁ

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

Part 2

Fill in the white gaps to continue the pattern:

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

Fill in the white gaps to continue the pattern:

Shape Patterns

 Here is a pattern:

Shape Patterns

Here is a pattern:

What is the $10^{\text {th }}$ shape in the pattern?
What is the $17^{\text {th }}$ shape in the pattern?

Shape Patterns

 Here is a pattern:| \triangle | さ | \triangle | N | \triangle | N | \triangle | T | \triangle | Σ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2 | | | | | | | | |

What is the $10^{\text {th }}$ shape in the pattern?
What is the $17^{\text {th }}$ shape in the pattern?

Shape Patterns

 Here is a pattern:| \triangle | N | \triangle | N | \triangle | N | \triangle | K | \triangle | K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| \triangle | 去 | \triangle | N | \triangle | N | \triangle | N | \triangle | \pm |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

What is the $10^{\text {th }}$ shape in the pattern?
What is the $17^{\text {th }}$ shape in the pattern?

Shape Patterns

Here is a pattern:

Shape Patterns

Here is a pattern:

\square	\bigcirc	\bigcirc	N	\square	\bigcirc	\bigcirc	N		
1	2	3	4	5	6	7	8		10

What is the $10^{\text {th }}$ shape in the pattern?
What is the $16^{\text {th }}$ shape in the pattern?

Shape Patterns

Here is a pattern:

	\bigcirc	\bigcirc	号	\square	\bigcirc	\bigcirc	N		\bigcirc
1	2	3	4	5	6		8	9	

What is the $10^{\text {th }}$ shape in the pattern?
What is the $16^{\text {th }}$ shape in the pattern?

Shape Patterns

Here is a pattern:

What is the $10^{\text {th }}$ shape in the pattern?
What is the $16^{\text {th }}$ shape in the pattern?

Asking Questions

For the question, would you show the answer as a graph?

I would use a graph because...
I would not use a graph because...

Asking Questions

For the question, would you show the answer as a graph?

What is the name of your school?

I would use a graph because...
I would not use a graph because...

Asking Questions

For the question, would you show the answer as a graph?

How many classrooms are there in your school?

I would use a graph because...
I would not use a graph because...

Asking Questions

For the question, would you show the answer as a graph?

How did the children in the class travel to school this morning?

I would use a graph because...
I would not use a graph because...

Asking Questions

For the question, would you show the answer as a graph?

What colour are the cars parked in the school car park?

I would use a graph because...
I would not use a graph because...

Asking Questions

Sandwich Chosen for School Lunch

What do you notice?

Asking Questions

Sandwich Chosen for School Lunch

The sandwich that was chosen the most was... ... more children chose tuna than...

This pictogram is easy/hard to read because...

Asking Questions

Pudding Chosen for School Lunch

 Cake

 Apple ${ }^{\text {in }} \boldsymbol{i}$
 而市示 1

Asking Questions

Pudding Chosen for School Lunch

Bscut \mid 市
 Cake
 Apple $\stackrel{\circ}{1}^{1}$

 $\stackrel{\circ}{\boldsymbol{q}}=5$ people

The pudding that was chosen the most was...
... more children chose cake than...
This pictogram is easy/hard to read because...

The Morning Routine

This is what Zara does in the morning in order (first to last):

The Morning Routine

This is what Zara does in the morning in order (first to last):

The Morning Routine

This is what Zara does in the morning in order (first to last):

True or false?

Zara brushes her teeth after she eats breakfast.
Zara walks the dog, then she brushes her teeth.
Zara brushes her teeth after she walks the dog.

The Morning Routine

This is what Zara does in the morning in order (first to last):

True or false?

Zara brushes her teeth after she eats breakfast. Zara walks the dog, then she brushes her teeth. \boldsymbol{x} Zara brushes her teeth after she walks the dog. $\sqrt{ }$

The Morning Routine

Raj has a shower, then he gets changed.
Raj brushes his teeth after breakfast.
Spot the Mistake:

Raj has a shower, then he gets changed.
Raj brushes his teeth after breakfast.

Spot the Mistake:

Raj has a shower, then he gets changed.
Raj brushes his teeth after breakfast.
Spot the Mistake:

The Morning Routine

Raj has a shower, then he gets changed.
Raj brushes his teeth after breakfast.
Answer 1:

Brushes his teeth

Answers: Shower, changed, breakfast, teeth

The Morning Routine

Raj has a shower, then he gets changed.
Raj brushes his teeth after breakfast.
Answer 2:

Answers: Shower, changed, breakfast, teeth Breakfast, teeth, shower, changed

The Morning Routine

Raj has a shower, then he gets changed.
Raj brushes his teeth after breakfast.
Answer 3:

Brushes his teeth

Answers: Shower, changed, breakfast, teeth Breakfast, teeth, shower, changed Breakfast, shower, changed, teeth

The Morning Routine

Task B Answers

Jen had a shower, then she got changed.
Jen combed her hair more than 40 minutes after her shower. Before 7:40am, Jen had walked the dog. Jen brushed her teeth, then she combed her hair.

The Morning Routine

Jen had a shower, then she got changed.
Jen combed her hair more than 40 minutes after her shower.
Before 7:40am, Jen had walked the dog.
Jen brushed her teeth, then she combed her hair.

Shower
10 mins

Shower before breakfast and walking dog (more than 40 minute gap between shower and combing hair).

The Morning Routine

Task B Answers

Jen had a shower, then she got changed.
Jen combed her hair more than 40 minutes after her shower. Before 7:40am, Jen had walked the dog. Jen brushed her teeth, then she combed her hair.

The Morning Routine

Task B Answers

Jen had a shower, then she got changed.
Jen combed her hair more than 40 minutes after her shower.
Before 7:40am, Jen had walked the dog.
Jen brushed her teeth, then she combed her hair.

The Morning Routine

Task B Answers

Jen had a shower, then she got changed.
Jen combed her hair more than 40 minutes after her shower.
Before 7:40am, Jen had walked the dog.
Jen brushed her teeth, then she combed her hair.

$\frac{$| Shower |
| :---: |
| 10 mins |}{$\frac{2}{6}$}

Jen has breakfast before combing her hair so there is at least 40 minutes between showering and combing hair.

The Morning Routine

Task B Answers

Jen had a shower, then she got changed.
Jen combed her hair more than 40 minutes after her shower. Before 7:40am, Jen had walked the dog. Jen brushed her teeth, then she combed her hair.

Shower 10 mins

The Morning Routine

Task B Answers

Jen had a shower, then she got changed.
Jen combed her hair more than 40 minutes after her shower. Before 7:40am, Jen had walked the dog. Jen brushed her teeth, then she combed her hair.

Shower 10 mins

The Morning Routine

Task C Answers

Dan woke up at 7:30am.
At 8:00am, Dan was eating breakfast.
Dan had a bath, then he got changed.
Dan read a book and fed the cat after breakfast.
Dan brushed his teeth 20 minutes after he had fed the cat.

The Morning Routine

Task C Answers

Dan woke up at 7:30am.
At 8:00am, Dan was eating breakfast.
Dan had a bath, then he got changed.
Dan read a book and fed the cat after breakfast.
Dan brushed his teeth 20 minutes after he had fed the cat.

There are jobs before and after breakfast.

The Morning Routine

Task C Answers

Dan woke up at 7:30am.
At 8:00am, Dan was eating breakfast.
Dan had a bath, then he got changed.
Dan read a book and fed the cat after breakfast.
Dan brushed his teeth 20 minutes after he had fed the cat.

Jobs after breakfast (not in order).

The Morning Routine

Task C Answers

Dan woke up at 7:30am.
At 8:00am, Dan was eating breakfast.
Dan had a bath, then he got changed.
Dan read a book and fed the cat after breakfast.
Dan brushed his teeth 20 minutes after he had fed the cat.

Jobs after breakfast (not in order).

The Morning Routine

Task C Answers

Dan woke up at 7:30am.
At 8:00am, Dan was eating breakfast.
Dan had a bath, then he got changed.
Dan read a book and fed the cat after breakfast.
Dan brushed his teeth 20 minutes after he had fed the cat.

Bath
10 mins

Jobs before breakfast.

The Morning Routine

Task C Answers

Dan woke up at 7:30am.
At 8:00am, Dan was eating breakfast.
Dan had a bath, then he got changed.
Dan read a book and fed the cat after breakfast.
Dan brushed his teeth 20 minutes after he had fed the cat.

Bath
10 mins

After breakfast jobs now in order.

The Morning Routine

Task C Answers

Dan woke up at 7:30am.
At 8:00am, Dan was eating breakfast.
Dan had a bath, then he got changed.
Dan read a book and fed the cat after breakfast.
Dan brushed his teeth 20 minutes after he had fed the cat.

Bath
10 mins

