Creating Reasoning Routines, Building Problem-Solvers
 Session 3

Building Problem-Solving Across the Curriculum

$\frac{1}{4}$ of a number is 20 .
What is the number?
$\frac{1}{4}$ of a number is 20 . What is the number?

Explain the Mistakes

Reflect the shape in the mirror line.

Mistake 1

Mistake 3

mirror
Mistake 2

mirror

Which Answer?

What is the missing Roman Numeral or number?

Explain the mistakes.

Correct or Incorrect?
 \checkmark or \boldsymbol{x}

Which of these regroups have been done correctly?

How Many Ways?

The answer must be a proper fraction.
Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways
there are
$162 \div 3$
694-365
$162 \div 6$
674-385
$324 \div 6$
551-262

$$
\begin{aligned}
& \frac{1}{10} \text { of } 40=\square \\
& \frac{1}{5} \text { of } 40=\square \\
& \frac{2}{5} \text { of } 40=\square \\
& \frac{4}{10} \text { of } 40=\square
\end{aligned}
$$

$$
\begin{aligned}
& 28 \div 4=\square \\
& 28 \div 4=\square+1 \\
& 28 \div 4=\square \times 1 \\
& 28 \div 4=\square \div 1
\end{aligned}
$$

(a) I chose a number. I multiplied my number by 3. Then I added 5. Now, my number is 26 . What number did I choose? 7
(b) I chose a number. I multiplied my number by 3 . Then I added 6 . Now, my number is 27 . What number did I choose? 7
(c) I chose a number. I multiplied my number by 3 . Then I subtracted 6 . Now, my number is 27 . What number did I choose? ||
(d) I chose a number. I divided my number by 3 . Then I subtracted 6. Now, my number is 27 . What number did I choose? 99

The answer to question D is the same/larger/smaller than question C because...

Task C

My number was \square
I multiply/divide my number by 6
| add/subtract 3
Now my number is $\mathbf{2 7}$

What is the largest number that could go in the blue box? 180

What is the smallest number that could go in the blue box? 4

To make the number in the blue box as large as possible...

$$
\text { - and } \div \text {, the startmust be as bigy as possiblef. }
$$

Max has $\mathbf{3}$ times as many conkers as Ben.

How many conkers does Ben have?

What information could be hidden?

Max has 3 times as many conkers as Ben. Altogether, they have 12 conkers. How many conkers does Ben have?

Max has 3 times as many conkers as Ben. Altogether, they have 12 conkers. How many conkers does Ben have?

Which picture represents the question?

For every 3 seeds that were planted, 1 seed grew. 60 seeds were planted. How many seeds grew?

For every 3 seeds that were planted, 1 seed grew. 60 seeds were planted. How many seeds grew?

Which picture represents the question?

Scaling and Ratio

Task A

Which bar model correctly represents each question?

Question	Complete the bar model and answer:
For every 5 right-handed children in the class, there is 1 left-handed child. There are 30 children in the class. How many are left-handed children are there in the class?	$\begin{array}{l\|l\|l\|l\|l} \mathrm{RH} & \left.\begin{array}{lllll} 5 & 5 & 5 & 5 & 5 \\ \mathrm{LH} & 5 & & \end{array}\right] 30 \\ \hline \end{array}$ $30 \div 6=5$
For every 3 penalties that Fred takes, he scores 2 goals. Last season, Fred scored 12 penalties. How many penalties did Fred take?	$\begin{aligned} & \text { Scones }=12 \\ & \text { Miss }=6 \\ & -18 \text { penalties } \end{aligned}$
It takes Zara three times as long to walk to school as Rose. It takes Rose 7 minutes to walk to school. How much longer does it take Zara to walk to school than Rose?	

Scaling and Ratio
（a）For every 3 seeds that Hannah plants， 2 grow．
Hannah plants 45 seeds．
How many seeds grow？

45 | 15 | 15 | 15 |
| :--- | :--- | :--- |

$$
\begin{aligned}
& 45 \div 3=15 \\
& 15 \times 2=30
\end{aligned}
$$

（b）Kara plants some seeds．For every 3 seeds that grow， 2 seeds do not grow．Kara plants 45 seeds．
How many seeds grow？

$$
27
$$

（c）At the tennis club，there are 6 times as many right－handed players as left－handed players． There are 42 right－handed players at tennis club． How many left－handed players are there at the tennis club？

$$
\begin{aligned}
& 45\left[\begin{array}{cc}
{[G Q} & 45 \div 5=9 \\
\square ⿴ 囗 十 ⿴ 囗 十 丁
\end{array}\right. \\
& 9 \times 3=27 \\
& 42 \div 6=7 \\
& R
\end{aligned}
$$ How many left－handed players are there at the cricket club？

Odd one out

3, 6, 9, 12
4, 7, 10, 13

4, 8, 12, 16

Numicon shows $1^{\text {st }}$ term

$$
3,6,9,12
$$

$$
4,7,10,13
$$

Numicon shows $4^{\text {th }}$ term

$$
3,6,9,12
$$

$$
4,7,10,13
$$

5, 9, 13

$4^{\text {th }}$ term
$10^{\text {th }}$ term

Explain

 Here is a sequence of numbers: $1,5,9,13 \ldots$Do you agree with these statements?
25 is in the sequence because it is 12 more than 13

26 is in the sequence because it is double 13

Explain why.

At the bike shop, it costs $\mathbf{£ 6}$ to hire a bike plus $£ \mathbf{4}$ for each hour that it is used.
How much does it cost to hire a bike for 5 hours?

At the bike shop, it costs $\mathbf{£ 6}$ to hire a bike plus $\mathbf{£ 4}$ for each hour that it is used.
How much does it cost to hire a bike for 5 hours?

Explain the Mistakes:

$\mathbf{£ 6} \times 5 \mathbf{+} \mathbf{£} \mathbf{4}=\mathbf{£} \mathbf{3 4}$

At the bike shop, it costs $\mathbf{£ 6}$ to hire a bike plus $£ \mathbf{4}$ for each hour that it is used.
How much does it cost to hire a bike for 5 hours?

Correct Answer:
$£ 4 \times 5+£ 6=£ 26$

$£ 4$	$£ 4$	$£ 4$	$£ 4$	$£ 4$	$£ 6$

Fixed Amount + Variable Amount

Question	Which Answer?
Mrs Evans bought 8 footballs online. They cost $£ 7$ each plus a $£ 5$ postage fee. What was the total cost?	Answer A: $\begin{aligned} & £ 7+£ 5=£ 12 \\ & £ 12 \times 8=£ 96 \end{aligned}$ Answer B: $\begin{aligned} & £ 7 \times 8=£ 56 \\ & £ 56+£ 5=£ 61 \end{aligned}$
It costs $£ 6$ per hour to hire a bike and $£ 3$ per hour to hire a helmet. How much does it cost to hire a bike and a helmet for 4 hours?	Answer $\begin{aligned} & \text { A: } \begin{array}{l} £ 6+£ 3=£ 9 \\ £ 9 \times 4=£ 36 \end{array} \end{aligned}$ Answer B: $\begin{aligned} & £ 6 \times 4=£ 24 \\ & £ 24+£ 3=£ 27 \end{aligned}$
Membership at the tennis club costs $£ 15$ per year. Members can hire a tennis court for $£ 6$ per match. How much does it cost to play 8 tennis matches?	Answer A: $£ 15 \times 8+£ 6=£ 126$ Answer B: $£ 6 \times 8+£ 15=£ 63$

Which question is the odd one out? Explain why. The middle one because it add
Extend: Write a question where the answer can be calculated in this way: $£ 12 \times 6+£ 4=£ 76$

Fixed Amount + Variable Amount

Make Your Own Pizza
 £3.50 for the pizza base
 75p per topping

Amy has £7.
How many toppings can she afford?

Make Your Own Pizza
 $£ 3.50$ for the pizza base
 75p per topping

Amy has £7.
How many toppings can she afford?

Make Your Own Pizza
 $£ 3.50$ for the pizza base
 75p per topping

Amy has £7.
How many toppings can she afford?

Amy can afford 4 toppings.

Fixed Amount＋Variable Amount

（a）To go surfing，each child needs surfboard and a wetsuit． It costs $£ 8$ to hire a surfboard and $£ 3$ to hire a wetsuit． $8+3=11$ How much does it cost for 7 children to go surfing？
（b）Tom prints 30 of his photos at the online store．It costs 15 p to $30 \times 15 \mathrm{~F}=4.50$ print each photo．It costs $£ 1.95$ to post the photos． How much does Tom pay in total？
（c）Some friends go to a show．Each ticket costs £8．They pay £4 to park at the theatre．In total，it costs the friends $£ 52$ ．
How many friends go to the show？ 6
（d）Mr Jones has $£ 75$ to spend on rugby balls．At the online store， the delivery fee is £4．Each rugby ball costs £12． How many rugby balls can Mr Jones buy？
（e）At Clara＇s Cycles，it costs $£ 9$ per hour to hire a bike．
At Beth＇s Bikes，it costs $£ 8$ plus $£ 6.50$ per hour to hire a bike． Jade wants to hire a bike for 3 hours， Which shop will cost the least？

Gym Prices:
 $£ 8$ per session for non-members
 £5 per session for members
 Membership: £20 per year

You save money by being a member of the gym if...

Success...
A challenge...
Next steps...
Question:

View Deconstructing Word Questions Samples

The sum of the digits for a whole-number is 6 .
All the digits are different.
What is the smallest that the number could be?
What is the largest that the number could be?
Example: the sum of the digits for 214 is $7(2+1+4=7)$

512
59

For each number...

- How many digits
- Sum of the digits

561 1056

89

The sum of the digits of a number is 8

The sum of the digits for a whole-number is 6 .
All the digits are different.
What is the smallest that the number could be?
What is the largest that the number could be?
Example: the sum of the digits for 214 is $7(2+1+4=7)$

The sum of the digits for a whole-number is 6 .
All the digits are different.
What is the smallest that the number could be?
What is the largest that the number could be?
Example: the sum of the digits for 214 is $7(2+1+4=7)$

The sum of the digits for a whole-number is 11 .
All the digits are different.
What is the largest that the number could be?
What is the smallest that the number could be?

107

The sum of these numbers...

The difference between the largest and smallest number is...

The sum of these numbers...

The difference between the largest and smallest number is...

The sum of these numbers...

The difference between the largest and smallest number is...

3
 7

The sum of these numbers...
The difference between the largest and smallest number is...

The sum of these numbers is $\mathbf{2 0}$

The difference between the largest and smallest number is $\mathbf{4}$

The sum of these numbers is $\mathbf{9}$
The difference between the largest and smallest number is $\mathbf{5}$

Write a digit in each box to complete this number sentence.

Write a digit in each box to complete this number sentence.

Write a digit in each box to complete this number sentence.

Write a digit in each box to complete this number sentence.

Write a digit in each box to complete this number sentence.

$\square \square \div 8=\square \frac{\square}{\frac{\square}{2}}$

$\square \div \square=\square \frac{\square}{2}$

$7 \div 2=3 \frac{1}{2}$

$\square \square \div \square=\square \frac{\square}{\frac{\square}{2}}$

True or False?

$$
\square \div 4=\square \frac{\square}{2}
$$

True or False?

$$
\square \div 4=2 \frac{\square}{2}
$$

True or False?

$9 \div 4=2 \frac{1}{2}$

True or False? $10 \div 4=2 \frac{1}{2}$

$\square \square \div \square=\square \frac{\square}{\frac{\square}{2}}$

Task 16 Question: Remainder of one-half

Complete the calculation using digits $0 \rightarrow 9$. You can only use each digit once. Position the digits 1,2 and 8 as shown.

Level 1: I can find an answer
Level 2: I can find different answers Level 3: I know how many possible answers there are

Agree or disagree:
I P
IL \square

$$
\div 8=4 \frac{1}{2}
$$

\square

$$
\div 4=8 \frac{1}{2}
$$

'The number in the blue box is the same is the number in the red box.'

$$
\begin{aligned}
& 32 \div 4=8 \\
& 32 \div 8=4
\end{aligned}
$$

But when you add the hales on it changes the question

$$
3 z+z=34 r
$$

$$
\begin{aligned}
& 32 \div 4=8 \frac{1}{2} \\
& 32-8=4 \frac{1}{2} \\
& 3 \times 0 \cdot 5=2 \\
& 32+4=36
\end{aligned}
$$

For this task you will need some small squares.

Make a rectangle with an area of 24 squares. Make the perimeter as large as possible.

Example:

Area of this shape $=21$ squares Perimeter of this shape $=20$

Rounded to the nearest 10, my number is 400.
My number is a multiple of 3 .

What could my number be?

There are different possible answers.

$0 \quad 4 \quad 5 \quad 8 \quad \square \times \square=$

$10 \times 10=100$
$11 \times 9=99$
$12 \times 8=96$
$13 \times 7=91$

$$
\begin{array}{ll}
10 \times 10=100 & \\
11 \times 9=99 & -1 \\
12 \times 8=96 & -4 \\
13 \times 7=91 & -9
\end{array}
$$

Take any number of counters from one pile. Take the same number from both piles. Win if you take the last counter.

Take any number of counters from one pile. Take the same number from both piles. Win if you take the last counter.

Take any number of counters from one pile. Take the same number from both piles. Win if you take the last counter.

Take any number of counters from one pile. Take the same number from both piles. Win if you take the last counter.

Take any number of counters from one pile. Take the same number from both piles. Win if you take the last counter.

Take any number of counters from one pile. Take the same number from both piles. Win if you take the last counter.

